Concurrent Methane Production and Oxidation in Surface Sediment from Aarhus Bay, Denmark
نویسندگان
چکیده
Marine surface sediments, which are replete with sulfate, are typically considered to be devoid of endogenous methanogenesis. Yet, methanogenic archaea are present in those sediments, suggesting a potential for methanogenesis. We used an isotope dilution method based on sediment bag incubation and spiking with 13C-CH4 to quantify CH4 turnover rates in sediment from Aarhus Bay, Denmark. In two independent experiments, highest CH4 production and oxidation rates (>200 pmol cm-3 d-1) were found in the top 0-2 cm, below which rates dropped below 100 pmol cm-3 d-1 in all other segments down to 16 cm. This drop in overall methane turnover with depth was accompanied by decreasing rates of organic matter mineralization with depth. Molecular analyses based on quantitative PCR and MiSeq sequencing of archaeal 16S rRNA genes showed that the abundance of methanogenic archaea also peaked in the top 0-2 cm segment. Based on the community profiling, hydrogenotrophic and methylotrophic methanogens dominated among the methanogenic archaea in general, suggesting that methanogenesis in surface sediment could be driven by both CO2 reduction and fermentation of methylated compounds. Our results show the existence of elevated methanogenic activity and a dynamic recycling of CH4 at low concentration in sulfate-rich marine surface sediment. Considering the common environmental conditions found in other coastal systems, we speculate that such a cryptic methane cycling can be ubiquitous.
منابع مشابه
Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China)
From 2012 to 2015, we investigated methane (CH4) distribution, air−sea fluxes, and sediment−water fluxes in an aquaculture bay (Sanggou Bay, China), and estimated the input of CH4 from potential land sources including rivers and groundwater. Surface water CH4 in the bay ranged from 3.0 to 302 nM, while bottom CH4 was usually higher due to sediment release. Water column CH4 in summer and autumn ...
متن کاملStable Isotope Tracing of Anaerobic Methane Oxidation in the Gassy Sediments of Eckernförde Bay, German Baltic Sea
Methane concentrations in the pore waters of Eckernförde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling di...
متن کاملIdentity, Abundance, and Reactivation Kinetics of Thermophilic Fermentative Endospores in Cold Marine Sediment and Seawater
Cold marine sediments harbor endospores of fermentative and sulfate-reducing, thermophilic bacteria. These dormant populations of endospores are believed to accumulate in the seabed via passive dispersal by ocean currents followed by sedimentation from the water column. However, the magnitude of this process is poorly understood because the endospores present in seawater were so far not identif...
متن کاملOff Limits: Sulfate below the Sulfate-Methane Transition
One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling—the simultaneous consumption and production of sulfate—has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment—thus the term crypt...
متن کاملWidespread methanotrophic primary production in lowland chalk rivers
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight g...
متن کامل